The Convergence Rate of Block Preconditioned Systems Arising from Lmf-based Ode Codes

نویسندگان

  • DANIELE BERTACCINI
  • MICHAEL K. NG
چکیده

The solution of ordinary and partial differential equations using implicit linear multistep formulas (LMF) is considered. More precisely, boundary value methods (BVMs), a class of methods based on implicit formulas will be taken into account in this paper. These methods require the solution of large and sparse linear systems M̂x = b. Block-circulant preconditioners have been proposed to solve these linear systems. By investigating the spectral condition number of M̂ , we show that the conjugate gradient method, when applied to solving the normalized preconditioned system, converges in at most O(log s) steps, where the integration step size is O(1/s). Numerical results are given to illustrate the effectiveness of the analysis. AMS subject classification: 65F10, 65N22.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preconditioned Linear Systems of Time-dependent Pdes. Properties and Performances

In this talk, we will survey some properties of the preconditioners introducedin [1,2] for the solution of the linear systems arising in time-dependent PDEs.Moreover, we will give theoretical results on the convergence rate of the under-lying preconditioned iterations using various Krylov subspace methods. Moreprecisely, if s is the size of the matrices related to the time-step ...

متن کامل

A Circulant Preconditioner for the Systems of LMF-Based ODE Codes

In this paper, a recently introduced block circulant preconditioner for the linear systems of the codes for ordinary differential equations (ODEs) is investigated. Most ODE codes based on implicit formulas, at each integration step, need the solution of one or more unsymmetric linear systems that are often large and sparse. Here, the boundary value methods, a class of implicit methods for the n...

متن کامل

Solving large systems arising from fractional models by preconditioned methods

This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...

متن کامل

Comparison results on the preconditioned mixed-type splitting iterative method for M-matrix linear systems

Consider the linear system Ax=b where the coefficient matrix A is an M-matrix. In the present work, it is proved that the rate of convergence of the Gauss-Seidel method is faster than the mixed-type splitting and AOR (SOR) iterative methods for solving M-matrix linear systems. Furthermore, we improve the rate of convergence of the mixed-type splitting iterative method by applying a preconditio...

متن کامل

On the modified iterative methods for $M$-matrix linear systems

This paper deals with scrutinizing the convergence properties of iterative methods to solve linear system of equations. Recently, several types of the preconditioners have been applied for ameliorating the rate of convergence of the Accelerated Overrelaxation (AOR) method. In this paper, we study the applicability of a general class of the preconditioned iterative methods under certain conditio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002